Solitary waves of singularly perturbed generalized KdV equation with high order nonlinearity
نویسندگان
چکیده
The paper is concerned on solitary waves for singularly perturbed generalized KdV equation with high order nonlinear terms. We firstly give the phase portraits of system related to unperturbed under various cases by theory planar dynamical system. Then using geometric singular perturbation and Melnikov's method, existence wave solutions equations terms established. It proven that some particular speeds will persist small perturbations.
منابع مشابه
Global Attractor for the Generalized Dissipative KDV Equation with Nonlinearity
In order to study the longtime behavior of a dissipative evolutionary equation, we generally aim to show that the dynamics of the equation is finite dimensional for long time. In fact, one possible way to express this fact is to prove that dynamical systems describing the evolutional equation comprise the existence of the global attractor 1 . The KDV equation without dissipative and forcing was...
متن کاملSolitary waves in the nonlinear Dirac equation with arbitrary nonlinearity.
We consider the nonlinear Dirac equations (NLDE's) in 1+1 dimension with scalar-scalar self interaction g{2}/k+1(ΨΨ){k+1} , as well as a vector-vector self interaction g{2}/k+1(Ψγ{μ}ΨΨγ{μ}Ψ){1/2(k+1)} . We find the exact analytic form for solitary waves for arbitrary k and find that they are a generalization of the exact solutions for the nonlinear Schrödinger equation (NLSE) and reduce to thes...
متن کاملVariational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves
The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...
متن کاملOn the Shoaling of Solitary Waves in the Kdv Equation
The waveheight change in surface waves with a sufficiently slow variation in depth is examined. Using a new formulation of the energy flux associated to waves modeled by the Korteweg-de Vries equation, a system of three coupled equations is derived for the determination of the local wave properties as waves propagate over gently changing depth. The system of equations is solved numerically, and...
متن کاملStability and instability of solitary waves of the fifth-order KdV equation: a numerical framework
The spectral problem associated with the linearization about solitary waves of the generalized fifth-order KdV equation is formulated in terms of the Evans function, a complex analytic function whose zeros correspond to eigenvalues. A numerical framework, based on a fast robust shooting algorithm on exterior algebra spaces is introduced. The complete algorithm has several new features, includin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems - Series S
سال: 2023
ISSN: ['1937-1632', '1937-1179']
DOI: https://doi.org/10.3934/dcdss.2022124